Respuesta :

Volume of the solid obtained by

rotating the region bounded by [tex]y=\sqrt{}x,y=3[/tex] and the y-axis about the y-axis.

[tex]=f^3_0\pi x^2dy[/tex]

[tex]=\pi f^3_0x^2dy[/tex]

[tex]=\pi f^3_0[/tex]  [tex]y^4dy[/tex] since [tex]y=\sqrt{}x[/tex]

[tex]=\pi [\frac{y^5}{5}]\frac{3}{0}[/tex]

[tex]=\pi (\frac{3^5}{5})[/tex]

[tex]=\frac{243\pi }{5}[/tex]

[tex]=48.6[/tex][tex]\pi[/tex]

So the required volume will be [tex]\frac{243\pi }{5}[/tex] cubic unit [tex]=4.86[/tex][tex]\pi[/tex] cubic unit

Learn more about the required volume here:

brainly.com/question/1578538