Respuesta :

slope of line ab is equal to y2 - y1 X2 - X1 0 - z and 4 minus minus 1 it is equal to -2/5

slope of the line problem 10 y2 - y1 upon X2 - X1 - 3 - 5upon - 5-(- 3 )=-8/2=-4

Answer:

Problem 10:

Slope of line KI [tex]=\boxed{2}\frac{\boxed{2}}{\boxed{3}}[/tex]

Problem 11:

Slope of line BC [tex]=\boxed{-}\frac{\boxed{2}}{\boxed{5}}[/tex]

Step by step explanation:

Problem 10:

  • Line is passing through the points I(-3, 5) & K(-5, -3)

  • [tex]\implies x_1 = -3,\: y_1= 5,\: x_2=-5, \: \&\: y_2 =-3[/tex]

  • Slope of line KI [tex]=\frac{y_2-y_1}{x_2-x_1}[/tex]

  • Slope of line KI [tex]=\frac{-3-5}{-5-(-3)}[/tex]

  • Slope of line KI [tex]=-\frac{-8}{-5+2}[/tex]

  • Slope of line KI [tex]=\frac{-8}{-3}[/tex]

  • Slope of line KI [tex]=\boxed{2}\frac{\boxed{2}}{\boxed{3}}[/tex]

Problem 11:

  • Line is passing through the points B(-1, 2) & C(4, 0)

  • [tex]\implies x_1 = -1,\: y_1= 2,\: x_2=4, \: \&\: y_2 =0[/tex]

  • Slope of line BC [tex]=\frac{y_2-y_1}{x_2-x_1}[/tex]

  • Slope of line BC [tex]=\frac{0-2}{4-(-1)}[/tex]

  • Slope of line BC [tex]=-\frac{2}{4+1}[/tex]

  • Slope of line BC [tex]=-\frac{2}{5}[/tex]

  • Slope of line BC [tex]=\boxed{-}\frac{\boxed{2}}{\boxed{5}}[/tex]