Respuesta :

It looks like the recursive sequence is

[tex]a_n = \dfrac{a_{n-1}}2[/tex]

By substitution, we have

[tex]a_{n-1} =\dfrac{a_{n-2}}2 \implies a_n = \dfrac{a_{n-2}}{2^2}[/tex]

[tex]a_{n-2} = \dfrac{a_{n-3}}2 \implies a_n = \dfrac{a_{n-3}}{2^3}[/tex]

[tex]a_{n-3} = \dfrac{a_{n-4}}2 \implies a_n = \dfrac{a_{n-4}}{2^4}[/tex]

and so on, down to

[tex]a_n = \dfrac{a_1}{2^{n-1}}}[/tex]

Given that [tex]a_1=64[/tex], it follows that the 7th term in the sequence is

[tex]a_7 = \dfrac{64}{2^{7-1}} = \dfrac{64}{2^6} = \dfrac{64}{64} = \boxed{1}[/tex]