- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
[tex]\large\blue\textsf{\textbf{\underline{\underline{Question:-}}}}[/tex]
Solve the following [tex]\mathrm{2(x+3)=x-4}[/tex].
[tex]\large\blue\textsf{\textbf{\underline{\underline{Answer and How to Solve:-}}}}[/tex]
First of all, we can remove the parentheses by multiplying 2 times x and 3:-
[tex]\mathrm{2x+6=x-4}[/tex]
Now that we removed the parentheses, the rest is a piece of cake, as long as we pay attention to the signs, and here's what I mean by that.
Subtract x on both sides:-
[tex]\mathrm{2x-x+6=-4}[/tex]
On simplification, we get
[tex]\mathrm{x+6=-4}[/tex]
Now we subtract 6 on both sides, which results in
[tex]\mathrm{x=-4-6}[/tex]
And finally,
[tex]\mathrm{x=-10}[/tex]
[Verification]
We can substitute -10 for x and see whether or not we end up with a true statement.
[tex]\mathrm{2(-10+3)=-10-4}[/tex]
Perform the operation inside the parentheses first:-
[tex]\mathrm{2(-7)=-14}[/tex]
On simplification, we get
[tex]\mathrm{-14=-14}[/tex]
Since the left-hand side (L.H.S.) is the same as the right-hand side (R.H.S), our solution (x=-10) is correct.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -