Respuesta :

Answer:

It is given that the volume of a cone = [tex]3\pi x^3[/tex] cubic units

Volume of cone with radius 'r' and height 'h' = [tex]\frac{1}{3}\pi r^2h[/tex]

Equating the given volumes, we get

[tex]3\pi x^3=\frac{1}{3}\pi r^2h[/tex]

[tex]r^2h=3[/tex] × [tex]3x^3[/tex]

[tex]r^2h=9 x^3[/tex]

It is given that the height is 'x' units.

Therefore, [tex]r^2x=9x^3[/tex]

[tex]r^2=9x^2[/tex]

Therefore, [tex]r=3 x[/tex]

So, the expression '[tex]3 x[/tex]' represents the radius of the cone's base in units.