Rewrite the expression as a single power with a negative exponent

[tex]~\hspace{7em}\textit{negative exponents} \\\\ a^{-n} \implies \cfrac{1}{a^n} ~\hspace{4.5em} a^n\implies \cfrac{1}{a^{-n}} ~\hspace{4.5em} \cfrac{a^n}{a^m}\implies a^na^{-m}\implies a^{n-m} \\\\[-0.35em] ~\dotfill\\\\ \left(\cfrac{1}{3}\cdot \cfrac{1}{3}\cdot \cfrac{1}{3}\cdot \cfrac{1}{3} \right)^2\implies \left[ \left( \cfrac{1}{3} \right)^4 \right]^2\implies \left( \cfrac{1^4}{3^4} \right)^2 \\\\\\ \left( \cfrac{1^{4\cdot 2}}{3^{4\cdot 2}} \right) \implies \cfrac{1}{3^8} \implies 3^{-8}[/tex]
let's recall that
[tex]\begin{array}{llll} 1^1&=&1\\ 1^{10}&=&1\\ 1^{1,000}&=&1\\ 1^{1,000,000,000}&=&1\\ 1^{1,000,000,000,000}&=&1\\ \end{array}[/tex]