Respuesta :
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
[tex]\large\blue\textsf{\textbf{\underline{\underline{Question:-}}}}[/tex]
A line has a gradient of 8 and passes through (2, 3). What is the line's equation?
[tex]\large\blue\textsf{\textbf{\underline{\underline{Answer and How to solve:-}}}}[/tex]
With the provided information, we can write the equation of the line in point-slope form:
[tex]\sf{y-y_1=m(x-x_1)}[/tex]
Where
y₁ = the y-coordinate of the point
m = gradient or slope
x₁ = the x-coordinate of the point
Substitute the values:-
[tex]\sf{y-3=8(x-2)}[/tex]
We have our equation in point-slope form.
If you need the equation in slope-intercept form, please consult the following steps.
[tex]\sf{y-3=8(x-2)}[/tex]
Use the distributive property and multiply 8 times x and -2:-
[tex]\sf{y-3=8x-16}[/tex]
Now, add 3 on both sides:-
[tex]\dashrightarrow\star\bigstar\boxed{\sf{y=8x-13}}[/tex]
Good luck.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -