Respuesta :

                  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

[tex]\large\blue\textsf{\textbf{\underline{\underline{Question:-}}}}[/tex]

        A line has a gradient of 8 and passes through (2, 3). What is the line's equation?

[tex]\large\blue\textsf{\textbf{\underline{\underline{Answer and How to solve:-}}}}[/tex]

       With the provided information, we can write the equation of the line in point-slope form:

          [tex]\sf{y-y_1=m(x-x_1)}[/tex]

Where

y₁ = the y-coordinate of the point

m = gradient or slope

x₁ = the x-coordinate of the point

Substitute the values:-

[tex]\sf{y-3=8(x-2)}[/tex]

We have our equation in point-slope form.

If you need the equation in slope-intercept form, please consult the following steps.

[tex]\sf{y-3=8(x-2)}[/tex]

Use the distributive property and multiply 8 times x and -2:-

[tex]\sf{y-3=8x-16}[/tex]

Now, add 3 on both sides:-

[tex]\dashrightarrow\star\bigstar\boxed{\sf{y=8x-13}}[/tex]

Good luck.

              - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -