Respuesta :

So

  • (5×5+5)⁵
  • (25+5)⁵
  • (30)⁵

a^n=a×a×a×a..n times

  • 30(30)(30)(30)(30)
  • 24300000

Answer:

24,300,000

Step-by-step explanation:

Given expression:  [tex](5 \cdot 5 + 5)^5[/tex]

We can solve this following the order of operations (PEDMAS):

  • Parentheses
  • Exponents
  • Multiplication and Division (from left to right)
  • Addition and Subtraction (from left to right)

We need to carry out that which is in the parentheses first:  [tex]5 \cdot 5 + 5[/tex]

According to the order of operations, we should carry out the multiplication first, followed by the addition:

[tex]\implies 5 \cdot 5+5=25+5=30[/tex]

Therefore,

[tex](5 \cdot 5 + 5)^5=(30)^5[/tex]

Finally, we carry out the exponent:

[tex]\begin{aligned}\implies 30^5 &=30 \cdot 30 \cdot 30 \cdot 30 \cdot 30\\ & =24,300,000\end{aligned}[/tex]

Therefore,

[tex](5 \cdot 5 + 5)^5=24,300,000[/tex]

-------------------------------------------------------------------------------------------

Alternatively, if the expression is [tex]5 \cdot 5 + 5^5[/tex]

We would carry out the exponent first:

[tex]\begin{aligned}\implies 5 \cdot 5 + 5^5 &=5 \cdot 5+(5 \cdot 5 \cdot 5 \cdot 5 \cdot 5)\\ & =5 \cdot 5+3125\end{aligned}[/tex]

Then the multiplication:

[tex]\implies 5 \cdot 5+3125=25+3125[/tex]

And finally the addition:

[tex]\implies 25+3125=3150[/tex]

Therefore,

[tex]5 \cdot 5 + 5^5=3150[/tex]