Respuesta :

[tex]\qquad\qquad\huge\underline{{\sf Answer}}[/tex]

Since, the Area of smaller rectangle is 35,

  • width = 5 ft

Let's calculate it's length ~

[tex]\qquad \sf  \dashrightarrow \:a = l \cdot w[/tex]

[tex]\qquad \sf  \dashrightarrow \:35 = l \cdot5[/tex]

[tex]\qquad \sf  \dashrightarrow \:l = 35 \div 5[/tex]

[tex]\qquad \sf  \dashrightarrow \:l = 7 \: ft[/tex]

And the two rectangles are similar ~ so the ratio of their sides are equal as well ~

Assume length of greater rectangle be x

[tex]\qquad \sf  \dashrightarrow \: \dfrac{25}{5} = \dfrac{x}{7} [/tex]

[tex]\qquad \sf  \dashrightarrow \:x = 5 \times 7[/tex]

[tex]\qquad \sf  \dashrightarrow \:x = 35[/tex]

Now, since the length and width of the greater rectangle is known, let's find it's Area ~

[tex]\qquad \sf  \dashrightarrow \:a = l \cdot w[/tex]

[tex]\qquad \sf  \dashrightarrow \:a = 35 \sdot25[/tex]

[tex]\qquad \sf  \dashrightarrow \:a = 875 \: \: ft {}^{2} [/tex]

So, Area of the greater rectangle is 875 ft²