The points (−8,−2) and (7,4) are the endpoints of the diameter of a circle. Find the length of the radius of the circle.

Answer
8.08
Use the distance formula:
[tex]\sf d = \sqrt{(x_2 - x_1)^2 + (y_2-y_1)^2}[/tex]
where (x1, y1), (x2, y1) are points
[tex]\rightarrow \sf d =\sqrt{(7-(-8))^2 + (4-(-2))^2}[/tex]
[tex]\rightarrow \sf d =\sqrt{(15)^2 + (6)^2}[/tex]
[tex]\rightarrow \sf d =3\sqrt{29}[/tex]
This is the length of diameter.
Then radius:
· diameter/2
[tex]\sf \cdot \dfrac{3\sqrt{29} }{2}[/tex]
[tex]\sf \cdot 8.0777[/tex]
[tex]\sf \cdot 8.08 \ \ (rounded \ to \ nearest \ hundreth)[/tex]