[tex]\qquad\qquad\huge\underline{{\sf Answer}}[/tex]
Let's simplify ~
[tex]\qquad \sf \dashrightarrow \: \sqrt{ {x}^{2} - 10x + 25 } [/tex]
[tex]\qquad \sf \dashrightarrow \: \sqrt{ {x}^{2} - 5x - 5x + 25 } [/tex]
[tex]\qquad \sf \dashrightarrow \: \sqrt{ {x}^{} (x- 5) - 5(x - 5) } [/tex]
[tex]\qquad \sf \dashrightarrow \: \sqrt{ (x- 5) (x - 5) } [/tex]
[tex]\qquad \sf \dashrightarrow \: \sqrt{ (x- 5) {}^{2} } [/tex]
[tex]\qquad \sf \dashrightarrow \: (x- 5) [/tex]
value x lies between :
[tex]\qquad \sf \dashrightarrow \: - 5 \leqslant x \leqslant 5[/tex]
if the value of x is taken -5
[tex]\qquad \sf \dashrightarrow \: - 5 - 5[/tex]
[tex]\qquad \sf \dashrightarrow \: - 10[/tex]
if value of x is taken as 5
[tex]\qquad \sf \dashrightarrow \:5 - 5[/tex]
[tex]\qquad \sf \dashrightarrow \:0[/tex]
So, the possible values of the required expression lies between ~
[tex]\qquad \sf \dashrightarrow \: - 10 \leqslant \sqrt{ {x}^{2} - 10x + 25 } < 0[/tex]
I hope you understood the whole procedure. let me know if you have any doubts in given steps ~