Respuesta :

[tex]\qquad\qquad\huge\underline{{\sf Answer}}[/tex]

Let's simplify ~

[tex]\qquad \sf  \dashrightarrow \: \sqrt{ {x}^{2} - 10x + 25 } [/tex]

[tex]\qquad \sf  \dashrightarrow \: \sqrt{ {x}^{2} - 5x - 5x + 25 } [/tex]

[tex]\qquad \sf  \dashrightarrow \: \sqrt{ {x}^{} (x- 5) - 5(x - 5) } [/tex]

[tex]\qquad \sf  \dashrightarrow \: \sqrt{ (x- 5) (x - 5) } [/tex]

[tex]\qquad \sf  \dashrightarrow \: \sqrt{ (x- 5) {}^{2} } [/tex]

[tex]\qquad \sf  \dashrightarrow \: (x- 5) [/tex]

value x lies between :

[tex]\qquad \sf  \dashrightarrow \: - 5 \leqslant x \leqslant 5[/tex]

if the value of x is taken -5

[tex]\qquad \sf  \dashrightarrow \: - 5 - 5[/tex]

[tex]\qquad \sf  \dashrightarrow \: - 10[/tex]

if value of x is taken as 5

[tex]\qquad \sf  \dashrightarrow \:5 - 5[/tex]

[tex]\qquad \sf  \dashrightarrow \:0[/tex]

So, the possible values of the required expression lies between ~

[tex]\qquad \sf  \dashrightarrow \: - 10 \leqslant \sqrt{ {x}^{2} - 10x + 25 } < 0[/tex]

I hope you understood the whole procedure. let me know if you have any doubts in given steps ~