The triangle VNH is an isosceles triangle because the lengths of sides VH and NH are congruent
The coordinates are given as:
V = (3,6)
N = (8,1)
H = (1,-1)
Calculate the distance between each point using:
[tex]d = \sqrt{(x_2 -x_1)^2 + (y_2 -y_1)^2}[/tex]
So, we have:
[tex]VN = \sqrt{(8 -3)^2 + (1 -6)^2}[/tex]
[tex]VN = \sqrt{50}[/tex]
[tex]VH = \sqrt{(1 -3)^2 + (-1 -6)^2}[/tex]
[tex]VH = \sqrt{53}[/tex]
[tex]NH = \sqrt{(8 -1)^2 + (1 +1)^2}[/tex]
[tex]NH = \sqrt{53}[/tex]
Notice that two sides of the triangle are equal.
Hence, the triangle VNH is an isosceles triangle
Read more about isosceles triangle at:
https://brainly.com/question/1475130
#SPJ1