Respuesta :
✒️ Equation
••••••••••••••••••••••••••••••••••••••
A. To find the x - intercept, let y = 0.
[tex]\tt \: \: \large \tt \: \begin{array}{|c|} \hline \tt \: 4x \: - \: 3y \: = \: \tt\underline{\green{ 12 }} \\ \tt 4x \: - \: 3(0) \: = \: \tt\underline{\blue{ 12 }} \\ \tt4x \: - \: 0 \: = \: \tt\underline{\pink{ 12 }} \\ \tt \tt\underline{\red{ \: x \: = \: 3 }} \\ \\ \tt \: x ↬\: the \: intercept\\ \tt\\ \hline\end{array} \: \\ [/tex]
[tex] \\ [/tex]
To find the y - intercept, let x = 0
[tex]\large \tt \: \begin{array}{|c|} \hline \tt 4x \: - \: 3y \: = \: \tt\underline{\green{ 12 }} \\ \tt 4(0) \: - \: 3y \: = \: \tt\underline{\blue{ 12 }} \\ \tt \: 0 \: - \: 3y \: = \: \tt\underline{\pink{ 12 }} \\ \tt \tt\underline{\red{ y \: = \: - 4 }} \\ \\ \tt \: x ↬\: the \: intercept \\ \ \\ \hline\end{array} \: [/tex]
[tex] \\ [/tex]
B. Replace x with 0 and solve for y. Then replace y with 0 and solve for x.
[tex]\large \tt \: \begin{array}{|c|} \hline \tt y \: - \: intercept: \: y \: = \: \frac{1}{3}(0) \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \tt = \tt\underline{\red{ 0 }} \\ \\ \tt \: x \: and \: y ↬ intercepts: (0,0)\\ \\ \tt \: x \: ↬ \: intercepts: \: 0 = \: \frac{1}{3} x \\ \quad\quad \quad \quad\quad\quad\quad\quad\quad \: \tt \tt\underline{\red{ \: 0 \: = \: x }} \ \\ \\ \hline\end{array} \\ [/tex]
[tex] \\ [/tex]
The equation in b is a linear equation in the form y = mx, where m is any real number. the graph of any equation in the form y = mx is always a line that passes through the origin, which means that both the x - and - y - intercepts are (0,0).
[tex]\large \tt \: \begin{array}{|c|} \hline \tt intercept \: for \: m \: of \: y \: = \: \tt\underline{\red{ mx }} \\ \hline\end{array}[/tex]
[tex] \\ [/tex]
C. Replace y with 0, then solve for the x.
[tex]\large \tt \: \begin{array}{|c|} \hline \tt x ↬ \: intercept : \: 0 \: = \: 2x \: \ + 5 \\ \\ \tt - 5 \: = \: 2x\\ \\ \tt \: \frac{ - 5}{2} \: = \: x\\ \\ \tt \: x \: ↬ \: intercept \ \\ \hline\end{array}[/tex]
Now, replace x with 0, and then solve for y.
[tex]\large \tt \: \begin{array}{|c|} \hline \tt y ↬ \: intercept: \: y \: = \: 2(0) \: + \: 5 \\ \\ \tt \: y \: = \: 0 \: + \: 5 \\ \\ \tt \: y \: = \: 5 \\ \\ \tt y ↬ \: intercept \ \\ \\ \hline\end{array}[/tex]
The equation in 11c is written in the form y = mx + b. note than in the form, when x is replaced by 0 to find the y↬intercept. you are left with the constant b.
[tex]\large \tt \: \begin{array}{|c|} \hline \tt \: the \: y ↬ intercept \: of \: y \: = \: mx \: + \: b \\ \hline\end{array}[/tex]
If the equation is in the form y = mx + b, where m and b are real numbers, then the y ↬intercept is b.
[tex] \\ [/tex]
D. Remember that the graph of y = 6 is horizontally line parallel to the x axis that passes through the y axis at (0,6). since the line is parallel to x axis, it will not incest tha x-axis. Hence, there is no x ↬ intercept.
[tex] \\ \\ \\ [/tex]
[tex]\pmb{(ノ‥)ノ}\qquad\qquad\qquad\qquad\boxed{\tt{[05-12-2022]}} \\ \qquad\qquad\qquad\qquad\qquad\qquad\boxed{\tt{[03:11 \: am]}}[/tex]