Respuesta :

Answer:

43 + 7i

Step-by-step explanation:

Given: (1 + 5i)(3 - 8i)

To find: Multiplication and simplification

Solution:

i=[tex]\sqrt{-1}[/tex],

Now, we simply open the brackets as follows:

(1 + 5i)(3 - 8i)

1(3 - 8i) + 5i (3 - 8i)

3 - 8i + 15i - 40[tex]i^{2}[/tex]

3 + 7i - 40[tex]i^{2}[/tex] - (i)

[tex]i^{2}[/tex] = i * i

[tex]i^{2}[/tex] = [tex]\sqrt{-1}[/tex] * [tex]\sqrt{-1}[/tex]

[tex]i^{2}[/tex] = -1

Now, put  [tex]i^{2}[/tex] = -1 into the equation (i)

we get

⇒ 3 + 7i -40(-1)

⇒ 3 + 7i + 40

⇒ 43 + 7i

∴ Final Answer : 43 + 7i

[tex]\qquad\qquad\huge\underline{{\sf Answer}}[/tex]

Here we go ~

what we need to know here is that :

[tex]\qquad \sf  \dashrightarrow \:i \cdot i = - 1[/tex]

Now, let's proceed accordingly ~

[tex]\qquad \sf  \dashrightarrow \:(1 + 5i) \cdot(3 - 8i)[/tex]

[tex]\qquad \sf  \dashrightarrow \:(1 \cdot3) - (1 \sdot8i) + (5i \cdot3) - (5i \cdot8i)[/tex]

[tex]\qquad \sf  \dashrightarrow \:3 - 8i + 15i - ( - 1)(40)[/tex]

[tex]\qquad \sf  \dashrightarrow \:3 + 7i - ( - 40)[/tex]

[tex]\qquad \sf  \dashrightarrow \:3 + 40 + 7i[/tex]

[tex]\qquad \sf  \dashrightarrow \:43 + 7i[/tex]