Respuesta :

[tex]\qquad\qquad\huge\underline{{\sf Answer}}[/tex]

Both the given lines in graph intersect at point (5 , -2), the point must satisfy both the equations.

and if we check the options, we will observe that D. option has both the equations that satisfy the given conditions.

that is ~

[tex]\qquad \sf  \dashrightarrow \: x + y = 3[/tex]

put y = - 2,we will get :

[tex]\qquad \sf  \dashrightarrow \: x - 2 = 3[/tex]

[tex]\qquad \sf  \dashrightarrow \: x = 5[/tex]

so, 1st equation satifys the condition. let's check out 2nd one.

[tex]\qquad \sf  \dashrightarrow \: x + 2y = 1[/tex]

put y = -2

[tex]\qquad \sf  \dashrightarrow \: x + (2 \times - 2) = 1[/tex]

[tex]\qquad \sf  \dashrightarrow \: x - 4 = 1[/tex]

[tex]\qquad \sf  \dashrightarrow \: x = 5[/tex]

Hence, we can conclude that the Correct choice is D