Answer:
[tex]x\approx-0.7149[/tex]
Step-by-step explanation:
[tex]\displaystyle 6^{x+2}=10\\\\\log_6(6^{x+2})=\log_6(10)\\\\x+2=\frac{\log(10)}{\log(6)}\\\\x+2\approx1.2851\\\\x\approx-0.7149[/tex]
Recall that the change of base formula is [tex]\displaystyle \log_a(b)=\frac{\log(b)}{\log(a)}[/tex]