Answer:
[tex]\boxed{ \rm \: Volume_{(Cylinder)} \approx \: 461.6 \: {m}^{3} } \rm (rounded \: to \: nearest \: tenth)[/tex]
Step-by-step explanation:
Given dimensions:
Given value of π :
To find:
Solution:
Here, we'll need to use the formulae of the volume of cylinder,to find it's volume.Its actually like a savior while solving these type of questions.
[tex] \pink{\star}\boxed{\rm \: Volume_{(Cylinder)} = \pi{r} {}^{2} h}\pink{\star}[/tex]
where,
Plug/substitute them onto the formulae,then simplify it using PEMDAS.
[tex] \rm \: Volume_{(Cylinder)} = \pi(7) {}^{2} \times 3[/tex]
[tex] \rm \: Volume_{(Cylinder)} = \pi(49)(3)[/tex]
[tex] \rm \: Volume_{(Cylinder)} = 147\pi \: [/tex]
[tex] \rm \: Volume_{(Cylinder)} = 147 \times 3.14[/tex]
[tex] \rm \: Volume_{(Cylinder)} = 461.58 \: {m}^{3} [/tex]
[tex] \boxed{\rm \: Volume_{(Cylinder)} \approx \: 461.6 \: {m}^{3}} \rm (rounded \: to \: nearest \: tenth) \: [/tex]
Hence, we can conclude that:
The volume of the cylinder is approximately
461.6 m³.
[tex] \rule{225pt}{2pt}[/tex]