Answer:
[tex] \boxed{\rm \: Volume_{(Cylinder)} \approx \: 307.7 \: m {}^{3} } ( \rm \: nearest \: tenth )[/tex]
Step-by-step explanation:
Given:
To Find:
Solution:
Use the formulae of the volume of cylinder:
[tex] \boxed{\rm \: Volume_{(Cylinder)} = \pi{r} {}^{2} h}[/tex]
where,
According to the question:
Substitute the values onto the formulae in order to find out the volume:
[tex] \rm \: Volume_{(Cylinder)} = \pi(7) {}^{2} (2)[/tex]
[tex] \rm \: Volume_{(Cylinder)} = \pi(49)(2)[/tex]
[tex]\rm \: Volume_{(Cylinder)} = 98\pi[/tex]
[tex]\rm \: Volume_{(Cylinder)} = \: 98 \times 3.14[/tex]
[tex]\rm \: Volume_{(Cylinder)} = 307.72 \: m {}^{3} \: (exact \: form)[/tex]
[tex] \boxed{\rm \: Volume_{(Cylinder)} \approx \: 307.7 \: m {}^{3} } \: ( \rm nearest \: tenth )[/tex]
Hence,we can conclude that:
The volume of the cylinder is approximately
307.7m³.