Respuesta :

Answer:

[tex]\huge\boxed{\sf |AB|=10 \ units}[/tex]

Step-by-step explanation:

Coordinate of A = [tex](x_1,y_1)[/tex] = (-7,-6)

Coordinate of B = [tex](x_2,y_2)[/tex] = (1,0)

We will use distance formula to find the length of AB.

Length of AB:

[tex]|AB|=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \\\\|AB|=\sqrt{(1-(-7))^2+(0-(-6))^2} \\\\|AB|=\sqrt{(1+7)^2+(6)^2} \\\\|AB|=\sqrt{(8)^2+36} \\\\|AB|=\sqrt{64+36} \\\\|AB|=\sqrt{100} \\\\\boxed{|AB|=10 \ units}\\\\\rule[225]{225}{2}[/tex]