Respuesta :
Step-by-step explanation:
First expression ...
[tex] = {ax}^{3} y[/tex]
[tex] = a \times x \times x \times x \times y[/tex]
Second expression.....
[tex] = b {x}^{4} {y}^{3} [/tex]
[tex] = b \times x \times x \times x \times x \times y \times y \times y[/tex]
HCF = common factor...
[tex] = x \times x \times x \times y[/tex]
[tex] = {x}^{3} y[/tex]
[tex]hence \: {x}^{3} y \: is \: the \: answer....[/tex]
Answer: HCF =
x³y
Step-by-step explanation:
HCF of ax³y and bx⁴y³
ax³y = a . x . x . x . y
bx⁴y³ = b . x . x . x . x . y . y . y
Common Factors = x . x . x . y
HCF = x . x . x . y
HCF = x³y Answer
therefore, the HCF of ax³y and bx⁴y³ is x³y.
hope that helps...
note: the dot (.) represents multiplication.