Respuesta :

Step-by-step explanation:

First expression ...

[tex] = {ax}^{3} y[/tex]

[tex] = a \times x \times x \times x \times y[/tex]

Second expression.....

[tex] = b {x}^{4} {y}^{3} [/tex]

[tex] = b \times x \times x \times x \times x \times y \times y \times y[/tex]

HCF = common factor...

[tex] = x \times x \times x \times y[/tex]

[tex] = {x}^{3} y[/tex]

[tex]hence \: {x}^{3} y \: is \: the \: answer....[/tex]

Answer: HCF =

x³y

Step-by-step explanation:

HCF of ax³y and bx⁴y³

ax³y = a . x . x . x . y

bx⁴y³ = b . x . x . x . x . y . y . y

Common Factors = x . x . x . y

HCF = x . x . x . y

HCF = x³y Answer

therefore, the HCF of ax³y and bx⁴y³ is x³y.

hope that helps...



note: the dot (.) represents multiplication.