The equivalent expression of [tex]\frac{(5ab)^3}{30ab^{-7}}[/tex] is [tex]\frac{25a^{2}b^{10}}{6}[/tex]
The expression is given as:
[tex]\frac{(5ab)^3}{30ab^{-7}}[/tex]
Expand the numerator
[tex]\frac{(5ab)^3}{30ab^{-7}} =\frac{125a^3b^3}{30ab^{-7}}[/tex]
Divide 125 and 30 by 5
[tex]\frac{(5ab)^3}{30ab^{-7}} =\frac{25a^3b^3}{6ab^{-7}}[/tex]
Apply the law of indices
[tex]\frac{(5ab)^3}{30ab^{-7}} =\frac{25a^{3-1}b^{3+7}}{6}[/tex]
Evaluate the exponent
[tex]\frac{(5ab)^3}{30ab^{-7}} =\frac{25a^{2}b^{10}}{6}[/tex]
Hence, the equivalent expression of [tex]\frac{(5ab)^3}{30ab^{-7}}[/tex] is [tex]\frac{25a^{2}b^{10}}{6}[/tex]
Read more about equivalent expression at:
https://brainly.com/question/2972832
#SPJ1