I need this answer as soon as possible! 50 points!

[tex]20^{\tfrac 52}\\\\=(20^5)^{\tfrac 12}\\\\=\left(20^4 \cdot 20 \right)^{\tfrac 12}\\\\=20^{\tfrac 42} \cdot 20^{\tfrac 12}\\\\=20^2 \sqrt{20}\\\\=400\sqrt{4 \times 5}\\\\=400 \times 2\sqrt 5\\\\=800\sqrt 5[/tex]
Answer:
[tex]800\sqrt{5}[/tex]
Step-by-step explanation:
Given: [tex]\large (20)^\text{$ \dfrac{5}{2} $}[/tex]
Properties of Exponents:
Rational Exponent Property: [tex]\large x^\text{$ \dfrac{m}{n} $} = \large \text{$ \sqrt[n]{x^m} $}[/tex]
Product of Powers Property:
1. Convert into a radical:
[tex]\sqrt[2]{20^5} \implies \sqrt{20^5}[/tex]
2. Simplify the expression:
[tex]\sqrt{20^2\times20^2\times20^1}\\\\\implies \sqrt{20^4\times20}\\\\\implies 20^2\sqrt{20}\\\\\implies 20^2\sqrt{4\times5}\\\\\implies 20^2\times2\sqrt{5}[/tex]
3. Evaluate the power:
[tex]20\times20\times2\sqrt{5}\\\\\implies 400\times2\sqrt{5}[/tex]
4. Multiply:
[tex](400\times2)\sqrt{5}\\\\\implies800\sqrt{5}[/tex]