Respuesta :

[tex]20^{\tfrac 52}\\\\=(20^5)^{\tfrac 12}\\\\=\left(20^4 \cdot 20 \right)^{\tfrac 12}\\\\=20^{\tfrac 42} \cdot 20^{\tfrac 12}\\\\=20^2 \sqrt{20}\\\\=400\sqrt{4 \times 5}\\\\=400 \times 2\sqrt 5\\\\=800\sqrt 5[/tex]

Esther

Answer:

[tex]800\sqrt{5}[/tex]

Step-by-step explanation:

Given: [tex]\large (20)^\text{$ \dfrac{5}{2} $}[/tex]

Properties of Exponents:

Rational Exponent Property: [tex]\large x^\text{$ \dfrac{m}{n} $} = \large \text{$ \sqrt[n]{x^m} $}[/tex]

  • a number raised to a fraction, can be converted to a radical.
  • the numerator becomes the exponent, and the denominator becomes the index of the radical.

Product of Powers Property:

  • when multiplying powers with the same base, add the exponents.

1. Convert into a radical:

[tex]\sqrt[2]{20^5} \implies \sqrt{20^5}[/tex]

2. Simplify the expression:

[tex]\sqrt{20^2\times20^2\times20^1}\\\\\implies \sqrt{20^4\times20}\\\\\implies 20^2\sqrt{20}\\\\\implies 20^2\sqrt{4\times5}\\\\\implies 20^2\times2\sqrt{5}[/tex]

3. Evaluate the power:

[tex]20\times20\times2\sqrt{5}\\\\\implies 400\times2\sqrt{5}[/tex]

4. Multiply:

[tex](400\times2)\sqrt{5}\\\\\implies800\sqrt{5}[/tex]