Can anyone help? 80 points!

Answer:
Step-by-step explanation:
Simplify in steps, using below properties of exponents:
Correct choice is D
Answer:
[tex]4x^2y^3\sqrt[3]{x^2y}[/tex]
Step-by-step explanation:
Given expression:
[tex]\left(8x^4y^5\right)^{\frac{2}{3}}[/tex]
Rewrite 4 as (3 + 1) and 5 as (3 + 2):
[tex]\implies \left(8x^{(3+1)}y^{(3+2)}\right)^{\frac{2}{3}}[/tex]
[tex]\textsf{Apply exponent rule} \quad a^{b+c}=a^b \cdot a^c:[/tex]
[tex]\implies \left(8x^3xy^3y^2}\right)^{\frac{2}{3}}[/tex]
[tex]\textsf{Apply exponent rule} \quad (a^b)^c=a^{bc}:[/tex]
[tex]\implies 8^{\left(\frac{2}{3}\right)}x^{\left(3 \times\frac{2}{3}\right)}x^{\left(\frac{2}{3}\right)}y^{\left(3 \times \frac{2}{3}\right)}y^{\left(2 \times \frac{2}{3}\right)}}[/tex]
[tex]\implies 4x^2x^{\frac{2}{3}}y^2y^{\frac{4}{3}}[/tex]
[tex]\implies 4x^2y^2x^{\frac{2}{3}}y^{\frac{4}{3}}[/tex]
Rewrite 4/3 as 1 + 1/3:
[tex]\implies 4x^2y^2x^{\frac{2}{3}}y^{\left(1+\frac{1}{3}\right)}[/tex]
[tex]\textsf{Apply exponent rule} \quad a^{b+c}=a^b \cdot a^c:[/tex]
[tex]\implies 4x^2y^2x^{\frac{2}{3}}y^1y^{\frac{1}{3}}[/tex]
[tex]\implies 4x^2y^2y^1x^{\frac{2}{3}}y^{\frac{1}{3}}[/tex]
[tex]\textsf{Apply exponent rule} \quad a^b \cdot a^c=a^{b+c}[/tex]
[tex]\implies 4x^2y^{(2+1)}x^{\frac{2}{3}}y^{\frac{1}{3}}[/tex]
[tex]\implies 4x^2y^3x^{\frac{2}{3}}y^{\frac{1}{3}}[/tex]
[tex]\textsf{Apply exponent rule} \quad a^{bc}=(a^b)^c:[/tex]
[tex]\implies 4x^2y^3\left(x^2\right)^{\frac{1}{3}}y^{\frac{1}{3}[/tex]
[tex]\textsf{Apply exponent rule} \quad a^b \cdot c^b=ac^b:[/tex]
[tex]\implies 4x^2y^3\left(x^2y\right)^{\frac{1}{3}[/tex]
[tex]\textsf{Apply exponent rule} \quad a^{\frac{1}{n}}=\sqrt[n]{a}:[/tex]
[tex]\implies 4x^2y^3\sqrt[3]{x^2y}[/tex]