What is the value of x in the triangle?

Answer:
D
Step-by-step explanation:
using the sine ratio in the right triangle and the exact value
sin45° = [tex]\frac{\sqrt{2} }{2}[/tex] , then
sin45° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{x}{4}[/tex] = [tex]\frac{\sqrt{2} }{2}[/tex] ( cross- multiply )
2x = 4[tex]\sqrt{2}[/tex] ( divide both sides by 2 )
x = 2[tex]\sqrt{2}[/tex]