Respuesta :

Answer:

x = 10[tex]\sqrt{2}[/tex] , y = 10[tex]\sqrt{6}[/tex]

Step-by-step explanation:

using the sine and cosine ratios in the right triangle and the exact values

cos60° = [tex]\frac{1}{2}[/tex] , sin60° = [tex]\frac{\sqrt{3} }{2}[/tex] , then

cos60° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{x}{20\sqrt{2} }[/tex] = [tex]\frac{1}{2}[/tex] ( cross- multiply )

2x = 20[tex]\sqrt{2}[/tex] ( divide both sides by 2 )

x = 10[tex]\sqrt{2}[/tex]

and

sin60° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{y}{20\sqrt{2} }[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex] ( cross- multiply )

2y = 20[tex]\sqrt{2}[/tex] × [tex]\sqrt{3}[/tex] = 20[tex]\sqrt{6}[/tex] ( divide both sides by 2 )

y = 10[tex]\sqrt{6}[/tex]