Respuesta :

Using a trigonometric identity, it is found that the values of the cosine and the tangent of the angle are given by:

  • [tex]\cos{\theta} = \pm \frac{2\sqrt{2}}{3}[/tex]
  • [tex]\tan{\theta} = \pm \frac{\sqrt{2}}{4}[/tex]

What is the trigonometric identity using in this problem?

The identity that relates the sine squared and the cosine squared of the angle, as follows:

[tex]\sin^{2}{\theta} + \cos^{2}{\theta} = 1[/tex]

In this problem, we have that the sine is given by:

[tex]\sin{\theta} = \frac{1}{3}[/tex]

Hence, applying the identity, the cosine is given as follows:

[tex]\cos^2{\theta} = 1 - \sin^2{\theta}[/tex]

[tex]\cos^2{\theta} = 1 - \left(\frac{1}{3}\right)^2[/tex]

[tex]\cos^2{\theta} = 1 - \frac{1}{9}[/tex]

[tex]\cos^2{\theta} = \frac{8}{9}[/tex]

[tex]\cos{\theta} = \pm \sqrt{\frac{8}{9}}[/tex]

[tex]\cos{\theta} = \pm \frac{2\sqrt{2}}{3}[/tex]

The tangent is given by the sine divided by the cosine, hence:

[tex]\tan{\theta} = \frac{\sin{\theta}}{\cos{\theta}}[/tex]

[tex]\tan{\theta} = \frac{\frac{1}{3}}{\pm \frac{2\sqrt{2}}{3}}[/tex]

[tex]\tan{\theta} = \pm \frac{1}{2\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}[/tex]

[tex]\tan{\theta} = \pm \frac{\sqrt{2}}{4}[/tex]

More can be learned about trigonometric identities at https://brainly.com/question/24496175

#SPJ1