Respuesta :

Let's use Thales theorem

  • AC/AB=CE/DE
  • 50+160/AB=160/120
  • 210/AB=4/3
  • 4AB=630
  • AB=630/4
  • AB=157(Approx)

Answer:

See below ~

Step-by-step explanation:

Let's get started!

Part (a) :

Statement 1 : ∠A = ∠E = 90° (indicated in diagram)

Statement 2 : ∠C = ∠C (common angle)

ΔABC ~ ΔBDC (AA similarity)

Part (b) :

Now that we have proved the triangles to be similar, we can take their corresponding sides in proportion.

⇒ [tex]\frac{EC}{AC} = \frac{ED}{AB}[/tex]

⇒ [tex]\frac{160}{160+50} = \frac{120}{AB}[/tex]

⇒ [tex]\frac{16}{21} = \frac{120}{AB}[/tex]

⇒ [tex]AB = \frac{120\times21}{16}[/tex]

⇒ [tex]AB = \frac{2520}{16}[/tex]

⇒ AB = 157.5