NO LINKS!!! This is NOT MULTIPLE CHOICE!!!

13. y = (x + 1)^2 - 2

a. What type of function?

b. How do you translate the parent function to produce the equation? ​

NO LINKS This is NOT MULTIPLE CHOICE 13 y x 12 2 a What type of function b How do you translate the parent function to produce the equation class=

Respuesta :

13. [tex]y=(x-1)^{2} -2[/tex]

a. Quadratic Function

b. The parent function is [tex]y=x^{2}[/tex]. Shift [tex]1[/tex] units to the left, shift [tex]2[/tex] units downward.

-Hope this helped :)

Answer:

Given equation:   [tex]y=(x+1)^2-2[/tex]

The function is a quadratic function in vertex form:  [tex]y=a(x-h)^2+k[/tex]

Translations

For [tex]a > 0[/tex]

[tex]f(x+a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units left}[/tex]

[tex]f(x-a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units right}[/tex]

[tex]f(x)+a \implies f(x) \: \textsf{translated}\:a\:\textsf{units up}[/tex]

[tex]f(x)-a \implies f(x) \: \textsf{translated}\:a\:\textsf{units down}[/tex]

Parent function:  [tex]f(x)=x^2[/tex]  

Translations

Translated 1 unit left:  [tex]f(x+1)=(x+1)^2[/tex]

Then translated 2 units down:  [tex]f(x)-2=(x+1)^2-2[/tex]

Therefore, translate the parent function by 1 unit left and 2 units down to produce the given equation.

Ver imagen semsee45