Respuesta :
Answer:
=> the passing point's y cord is lower than vertex, meaning it is a reflection
[tex]y=-a\left(x+h\right)^{2}-k[/tex]
=>Apply the vertex to hk form
[tex]y=-a\left(x+4\right)^{2}-1[/tex]
=> Find a by plugging X and Y of the passing through point
[tex]-3=-a\left(-2+4\right)^2-1[/tex]
=> solve
[tex]-4a-1+1=-3+1[/tex]
[tex]a=\frac{1}{2}[/tex]
Therefore the equation for this is,
[tex]y=-\frac{1}{2}\left(x+4\right)^{2}-1[/tex]

Answer:
[tex]y=-\dfrac{1}{2}(x+4)^2-1[/tex]
Step-by-step explanation:
Vertex form: [tex]y=a(x-h)^2+k[/tex]
where:
- [tex](h, k)[/tex] is the vertex
- [tex]a[/tex] is some constant
Given:
- vertex = (-4, -1)
- point on parabola = (-2, -3)
Substitute given values into the formula to find [tex]a[/tex]:
[tex]\implies -3=a((-2)-(-4))^2+(-1)[/tex]
[tex]\implies -3=a(2)^2-1[/tex]
[tex]\implies -3=4a-1[/tex]
[tex]\implies -2=4a[/tex]
[tex]\implies a=-\dfrac{2}{4}=-\dfrac{1}{2}[/tex]
Therefore, the equation of the parabola is:
[tex]y=-\dfrac{1}{2}(x+4)^2-1[/tex]
