Respuesta :

The Graph is in the picture above ;)

Ver imagen josephtainilai2

Answer:

Given function:

[tex]f(x)=\sqrt{x}[/tex]

Replace f(x) for y:

[tex]\implies y=\sqrt{x}[/tex]

Square both sides:

[tex]\implies y^2=x[/tex]

This is a sideways parabola that opens to the right, with an axis of symmetry at y = 0.  (Refer to attachment 1)

If we square root this again, we get:

[tex]\implies \sqrt{y^2}=\sqrt{x}[/tex]

[tex]\implies y=\pm\sqrt{x}[/tex]

So [tex]y=\sqrt{x}[/tex] is the part of the parabola in quadrant I → (x, y)

And [tex]y=-\sqrt{x}[/tex] is the part of the parabola in quadrant IV → (x, -y)

(Refer to attachment 2)

Therefore, the graph of the given function is attachment 3.

Ver imagen semsee45
Ver imagen semsee45
Ver imagen semsee45