Answer:
Centroid of the triangle is (4, 1).
Step-by-step explanation:
Centroid Formula (for a triangle)
[tex]\text{centroid} = (\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3})[/tex]
x₁, x₂, x₃ ... x-coordinates of the vertices
y₁, y₂, y₃ ... y-coordinates of the vertices
Given:
A(6, 2)
B(-1, 6)
C(7, -5)
Insert coordinates in the formula. Points are in form (x, y).
[tex](\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3})[/tex]
[tex](\frac{6 - 1 + 7}{3}, \frac{2 + 6 - 5}{3})[/tex]
[tex](\frac{12}{3}, \frac{3}{3})[/tex]
[tex](4, 1)[/tex]