f(x) = √3x
g(x) = 5x + 2
Find () (x). Include any restrictions on the domain.
3/3x
○ A. (1) (x) = 5, x ± − ²/
5x+2
O B. () (2) = 5,2 ≥ 0
○ c. ()(x) =
O
x
+29
OD. ()(x)=√x #0
5x+2
*
52
25

Respuesta :

The domain of the function is [tex](\frac{f}{g})(x) = \frac{\sqrt[3]{3x}}{5x + 2}[/tex] . [tex]x \ne -\frac 25[/tex]

How to determine the domain and the restrictions?

The attached image represents the complete form of the question

The functions are given as:

[tex]f(x) = \sqrt[3]{3x}[/tex]

g(x) = 5x + 2

The function (f/g)(x) is calculated using:

[tex](\frac{f}{g})(x) = \frac{f(x)}{g(x)}[/tex]

This gives

[tex](\frac{f}{g})(x) = \frac{\sqrt[3]{3x}}{5x + 2}[/tex]

The denominator cannot be 0.

So, we have:

[tex]5x + 2 \ne 0[/tex]

Solve for x

[tex]x \ne -\frac 25[/tex]

Hence, the domain of the function is [tex](\frac{f}{g})(x) = \frac{\sqrt[3]{3x}}{5x + 2}[/tex] . [tex]x \ne -\frac 25[/tex]

Read more about domain at:

https://brainly.com/question/1770447

#SPJ1

Ver imagen MrRoyal