The domain of the function is [tex](\frac{f}{g})(x) = \frac{\sqrt[3]{3x}}{5x + 2}[/tex] . [tex]x \ne -\frac 25[/tex]
The attached image represents the complete form of the question
The functions are given as:
[tex]f(x) = \sqrt[3]{3x}[/tex]
g(x) = 5x + 2
The function (f/g)(x) is calculated using:
[tex](\frac{f}{g})(x) = \frac{f(x)}{g(x)}[/tex]
This gives
[tex](\frac{f}{g})(x) = \frac{\sqrt[3]{3x}}{5x + 2}[/tex]
The denominator cannot be 0.
So, we have:
[tex]5x + 2 \ne 0[/tex]
Solve for x
[tex]x \ne -\frac 25[/tex]
Hence, the domain of the function is [tex](\frac{f}{g})(x) = \frac{\sqrt[3]{3x}}{5x + 2}[/tex] . [tex]x \ne -\frac 25[/tex]
Read more about domain at:
https://brainly.com/question/1770447
#SPJ1