Respuesta :

The definition of the function is (a) [tex]\left[\begin{array}{cc}2x&if\ x < 2\\\frac12 x + \frac 52&if x \ge 1\end{array}\right[/tex]

How to determine the function definition?

The graph shows a piecewise function that has the following domain

x < 1 and x ≥ 1

At x < 1, we have the following points

(0,0) and (1,2)

The linear equation is calculated using:

[tex]y = \frac{y_2 -y_1}{x_2 - x_1} * (x -x_1) + y_1[/tex]

This gives

[tex]y = \frac{2-0}{1 - 0} * (x -0) + 0[/tex]

y = 2x.

So, we have:

y = 2x if x < 1

At x ≥ 1, we have the following points

(1,3) and (3,4)

The linear equation is calculated using:

[tex]y = \frac{y_2 -y_1}{x_2 - x_1} * (x -x_1) + y_1[/tex]

This gives

[tex]y = \frac{4-3}{3 - 1} * (x -1) + 3[/tex]

[tex]y = \frac{1}{2} * (x -1) + 3[/tex]

Expand

[tex]y = \frac{1}{2}x + \frac 52[/tex]

So, we have:

[tex]y = \frac{1}{2}x + \frac 52[/tex] if x ≥ 1

Hence, the definition of the function is (a) [tex]\left[\begin{array}{cc}2x&if\ x < 2\\\frac12 x + \frac 52&if x \ge 1\end{array}\right[/tex]

Read more about piecewise functions at:

https://brainly.com/question/11827078

#SPJ1

Otras preguntas