Respuesta :
Answer:
Question 10
[tex]\begin{aligned}\textsf{Perimeter} & = 50\\\\\implies 7 + \dfrac{1}{2}x+(x-8) & = 50\\\\\dfrac{3}{2}x & =51\\\\x & = 34\end{aligned}[/tex]
Input found value of x to determine side lengths:
[tex]\implies 7[/tex]
[tex]\implies \dfrac{1}{2}(34)=17[/tex]
[tex]\implies 34-8=26[/tex]
Therefore, the length of the smallest side is 7 units.
Question 11
[tex]\begin{aligned}\textsf{Perimeter} & = 75\\\\\implies 21 + \dfrac{1}{2}x+(x+1) & = 75\\\\\dfrac{3}{2}x & =53\\\\x & = \dfrac{106}{3}\end{aligned}[/tex]
Input found value of x to determine side lengths:
[tex]\implies 21[/tex]
[tex]\implies \dfrac{1}{2}\left(\dfrac{106}{3}\right)=\dfrac{53}{3}=17\frac{2}{3}[/tex]
[tex]\implies \dfrac{106}{3}+1=\dfrac{109}{3}=36\frac{1}{3}[/tex]
Therefore, the length of the smallest side is 17 ²/₃ units.
#10
- Perimeter=sum of sides
[tex]\\ \rm\Rrightarrow 7+0.5x+x-8=50[/tex]
[tex]\\ \rm\Rrightarrow 1.5x-1=50[/tex]
[tex]\\ \rm\Rrightarrow 1.5x=51[/tex]
[tex]\\ \rm\Rrightarrow x=34[/tex]
- Smallest side should be 7units
As 0.5x=17units and x-8=26units
#11
[tex]\\ \rm\Rrightarrow x+1+21+0.5x=75[/tex]
[tex]\\ \rm\Rrightarrow 1.5x+22=75[/tex]
[tex]\\ \rm\Rrightarrow 1.5x=53[/tex]
[tex]\\ \rm\Rrightarrow x=35.3[/tex]
- 0.5x=17.6
- x+1=36.3
Smallest side 21units