Respuesta :

The choices that are equivalent to the given expression are

A. [tex]\sqrt[4]{x^{9} }[/tex]

B. [tex](x^{9} )^{\frac{1}{4} }[/tex]

E. [tex](\sqrt[4]{x })^{9}[/tex]

Indices

From the question, we are to determine which of the given choices are equivalent to the given expression

The given expression is

[tex]x^{\frac{9}{4} }[/tex]

We will simplify each of the given choices to determine which are equivalent to the given expression

  • A. [tex]\sqrt[4]{x^{9} }[/tex]

By law of indices,

[tex]\sqrt[n]{x^{m} } = x^{\frac{m}{n}}[/tex]

∴  [tex]\sqrt[4]{x^{9} }=x^{\frac{9}{4} }[/tex]

Hence, [tex]\sqrt[4]{x^{9} }[/tex] is equivalent to the given expression

  • B. [tex](x^{9} )^{\frac{1}{4} }[/tex]

If we clear the bracket and multiply the powers, we get

[tex]x^{9\times \frac{1}{4} }[/tex]

= [tex]x^{\frac{9}{4} }[/tex]

Hence,    [tex](x^{9} )^{\frac{1}{4} }[/tex] is equivalent to the given expression

  • C. [tex](x^{4} )^{\frac{1}{9} }[/tex]

If we clear the bracket and multiply the powers, we get

[tex]x^{4\times \frac{1}{9} }[/tex]

= [tex]x^{\frac{4}{9} }[/tex]

Hence,    [tex](x^{4} )^{\frac{1}{9} }[/tex] is not equivalent to the given expression

  • D. [tex]\sqrt[9]{x^{4} }[/tex]

By law of indices,

[tex]\sqrt[n]{x^{m} } = x^{\frac{m}{n}}[/tex]

∴  [tex]\sqrt[9]{x^{4} }=x^{\frac{4}{9} }[/tex]

Hence, [tex]\sqrt[9]{x^{4} }[/tex] is not equivalent to the given expression

  • E. [tex](\sqrt[4]{x })^{9}[/tex]

By law of indices,

[tex](\sqrt[n]{x })^{m}= (x^{\frac{1}{n}})^{m}[/tex]

∴  [tex](\sqrt[4]{x })^{9}= (x^{\frac{1}{4}})^{9}[/tex]

If we clear the bracket and multiply the powers, we get

[tex]x^{\frac{1}{4}\times 9 }[/tex]

= [tex]x^{\frac{9}{4} }[/tex]

Hence,  [tex](\sqrt[4]{x })^{9}[/tex] is equivalent to the given expression

  • F.  [tex](\sqrt[9]{x })^{4}[/tex]

By law of indices,

[tex](\sqrt[n]{x })^{m}= (x^{\frac{1}{n}})^{m}[/tex]

∴  [tex](\sqrt[9]{x })^{4}= (x^{\frac{1}{9}})^{4}[/tex]

If we clear the bracket and multiply the powers, we get

[tex]x^{\frac{1}{9}\times 4 }[/tex]

= [tex]x^{\frac{4}{9} }[/tex]

Hence, [tex](\sqrt[9]{x })^{4}[/tex] is not equivalent to the given expression

Thus, the choices that are equivalent to the given expression are

A. [tex]\sqrt[4]{x^{9} }[/tex]

B. [tex](x^{9} )^{\frac{1}{4} }[/tex]

E. [tex](\sqrt[4]{x })^{9}[/tex]

Learn more on Indices here: https://brainly.com/question/8957448

#SPJ1

Ver imagen Abdulazeez10