contestada

Select the two values of x that are roots of this equation.
x² - 5x+ 5 = 0
A.
X =
B. X=
C.
D.
X =
X=
5+√45
2
5+√√5
2
5-√45
2
5-√√5
2
SUBMIT

Respuesta :

Therefore the roots are,    [tex]x=\frac{5+\sqrt{5}}{2},\:x=\frac{5-\sqrt{5}}{2}[/tex]

We have given that,

The two values of x that are the roots of this equation,

x² - 5x+ 5 = 0

What is the quadratic formula?

[tex]\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}[/tex]

[tex]\quad x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

[tex]\mathrm{For\:}\quad a=1,\:b=-5,\:c=5[/tex]

[tex]x_{1,\:2}=\frac{-\left(-5\right)\pm \sqrt{\left(-5\right)^2-4\cdot \:1\cdot \:5}}{2\cdot \:1}[/tex]

[tex]x_{1,\:2}=\frac{-\left(-5\right)\pm \sqrt{\left(-5\right)^2-4\cdot \:1\cdot \:5}}{2\cdot \:1}[/tex]

[tex]x_{1,\:2}=\frac{-\left(-5\right)\pm \sqrt{5}}{2\cdot \:1}[/tex]

[tex]x_1=\frac{-\left(-5\right)+\sqrt{5}}{2\cdot \:1},\:x_2=\frac{-\left(-5\right)-\sqrt{5}}{2\cdot \:1}[/tex]

Therefore the roots are,

[tex]x=\frac{5+\sqrt{5}}{2},\:x=\frac{5-\sqrt{5}}{2}[/tex]

To learn more about the roots visit:

https://brainly.com/question/2833285

#SPJ1