Can anyone help with this I dont understand
A diameter of a circle has endpoints P(-8, 3) and Q(2, 9).

a. Find the center of the circle.

b. Find the radius. If your answer is not an integer, express it in radical form.

c. Write an equation for the circle.

Respuesta :

The center of the circle is (-3,6)

The radius of the circle is [tex]\sqrt{34}[/tex] units

Equation of the circle is [tex]x^{2}[/tex] + [tex]y^{2}[/tex] +6x -6y + 11 = 0

What is a circle?

A circle is the locus of points equidistant from a given point called the center of the circle.

Analysis:

Center of the circle is the mid point of the coordinates of the diameter P(-8,3) and Q(2,9).

x = x1+x2/2 = -8+2/2 = -6/2 = -3

y = y1+y2/2 = 3+9/2 = 12/2 = 6

coordinates of center are (-3,6)

To find the radius, first find the diameter of the circle

D = [tex]\sqrt{(x2-x1)^{2} + (y2-y1)^{2} }[/tex]

D = [tex]\sqrt{(2--8)^{2} + (9-3)^{2} }[/tex] = 2[tex]\sqrt{34}[/tex] units

Radius, R = D/2 =  2[tex]\sqrt{34}[/tex]/2 =  [tex]\sqrt{34}[/tex] units

Equation of circle with centers a and b is:

[tex](x-a)^{2}[/tex] + [tex](y-b)^{2}[/tex] = [tex]r^{2}[/tex]

where a = -3, b = 6

[tex](x--3)^{2}[/tex] + [tex](y-6)^{2}[/tex] = [tex]\sqrt{34} ^{2}[/tex]

[tex](x+3)^{2}[/tex] + [tex](y-6)^{2}[/tex] = 34

[tex]x^{2}[/tex] +6x + 9 + [tex]y^{2}[/tex] -12y +36 = 34

[tex]x^{2}[/tex]  +  [tex]y^{2}[/tex] + 6x -12y + 11 = 0

In conclusion,

The center of the circle is (-3,6)

The radius of the circle is [tex]\sqrt{34}[/tex] units

Equation of the circle is [tex]x^{2}[/tex] + [tex]y^{2}[/tex] +6x -6y + 11 = 0

Learn more about equation of circle: brainly.com/question/1506955

#SPJ1