The quotient when [tex]\frac{5-x}{x^2+3x-4} /\frac{x^2-2x - 15}{x^2+5x+4}[/tex] in simplified form is [tex]\frac{-(x+1)}{(x-1)(x+3)}[/tex]
An equation is an expression that shows the relationship between two or more numbers and variables.
Given that equation:
[tex]\frac{5-x}{x^2+3x-4} /\frac{x^2-2x - 15}{x^2+5x+4}[/tex]
[tex]=\frac{5-x}{(x+4)(x-1)} /\frac{(x-5)(x+3)}{(x+4)(x+1)} \\\\=\frac{5-x}{(x+4)(x-1)} * \frac{(x+4)(x+1)}{(x-5)(x+3)}\\\\\frac{-(x-5)}{(x+4)(x-1)} * \frac{(x+4)(x+1)}{(x-5)(x+3)}\\\\=\frac{-(x+1)}{(x-1)(x+3)}[/tex]
The quotient when [tex]\frac{5-x}{x^2+3x-4} /\frac{x^2-2x - 15}{x^2+5x+4}[/tex] in simplified form is [tex]\frac{-(x+1)}{(x-1)(x+3)}[/tex]
Find out more on equation at: https://brainly.com/question/2972832
#SPJ1