Respuesta :

  • y=x^2-2x-15

x coordinate of vertex

  • -b/2a
  • -(-2)/2
  • 2/2
  • 1

y coordinate of vertex

  • y=(1)³-2(1)-15
  • y=1-2-15
  • y=-16

Vertex

  • (1,-16)

Answer:

(1, -16)

Step-by-step explanation:

Vertex form of a quadratic equation:

[tex]y=a(x-h)^2+k[/tex]

where:

  • (h, k) is the vertex
  • a is some constant

Given equation:

[tex]x^2-2x-15=y[/tex]

To convert the given quadratic equation to vertex form, complete the square.

Add 15 to both sides:

[tex]\implies x^2-2x-15+15=y+15[/tex]

[tex]\implies x^2-2x=y+15[/tex]

Add the square of half the coefficient of the [tex]x[/tex] term to both sides:

[tex]\implies x^2-2x+\left(\dfrac{-2}{2}\right)^2=y+15+\left(\dfrac{-2}{2}\right)^2[/tex]

[tex]\implies x^2-2x+1=y+16[/tex]

Factor the left side:

[tex]\implies (x-1)^2=y+16[/tex]

Subtract 16 from both sides:

[tex]\implies (x-1)^2-16=y[/tex]

[tex]\implies y=(x-1)^2-16[/tex]

Comparing with the vertex form:

[tex]\implies h=1, \quad k=-16[/tex]

Therefore, the vertex of the given quadratic is (1, -16)