Respuesta :

Answer:

2nd quadrant.

Step-by-step explanation:

[tex]\text{Given that,}~ \cos \theta < 0~ \text{and}~ \csc \theta > 0.}\\\\\text{So,}~\cos \theta ~ \text{is negative and}~ \csc \theta ~ \text{is positive.}\\\\\text{In Quadrant II, all other ratios are negative except}~ \sin \theta ~ \text{ and}~ \csc \theta.\\\\\text{Hence, the angle lies in the 2nd quadrant.}~[/tex]