Respuesta :

Required Answer

  • p = 5 ; q = 3(p - 1)

[tex] \dashrightarrow \: \bf{Solution}[/tex]

Given that,

[tex] \sf(3x - 1)(x + p) = 3 {x}^{2} + qx - 5[/tex]

So yea' let's begin!

[tex] \sf \longrightarrow \sf \: 3 {x}^{2} + 3xp - x - p = 3 {x}^{2} + qx - 5[/tex]

Here, 3x² will be cancelled out!

[tex] \sf \longrightarrow \: 3x(p - 1) - p = qx - 5[/tex]

[tex]\sf \longrightarrow \: [3(p - 1)]x \: - p = qx - 5[/tex]

On comparing ~

[tex] \sf \twoheadrightarrow\bf \: q = \red{3(p - 1)}[/tex]

[tex] \bf \twoheadrightarrow \: p = \blue{ 5}[/tex]

[tex] \sf[/tex]

[tex] \rule{200pt}{2pt}[/tex]