contestada

Each vertical cross-section of the triangular prism shown below is an isosceles triangle.What is the slant height, 8, of the triangular prism?

Each vertical crosssection of the triangular prism shown below is an isosceles triangleWhat is the slant height 8 of the triangular prism class=

Respuesta :

Step-by-step explanation:

Given: h(height) = 5

b(breadth) = 4

Therefore, Using Pythagoras theorem:

[tex](slant \: height)² = {h}^{2} + {b}^{2} \\ \: \: \: \: \: \: \: = {5}^{2} + {4}^{2} \\ \: \: \: = 25 + 16 \\ \: \: \: \: \: \: \: \: \: = (41)²[/tex]

= 1681

Hope it helps

Answer: 5.4 units

Using Pythagoras Theorem:

a² + b² = c²

Here given following:

a = 2

b = 5

c = slant height

Solve for s:

s² = 2² + 5²

s² = 4 + 25

s² = 29

s = √29 = 5.38 ≈ 5.4 (rounded to nearest tenth)