Respuesta :

The simplified form of the expression [tex]\frac{(s^{2}+1 )^{2} (-2)-(-2s)(2)(s^{2}+1)(2s)}{(s^{2}+1 )^{4} }[/tex] is [tex]\frac{6s^{2}-2 }{(s^{2}+1 )^{3} }[/tex]

How to simplify an expression?

To simplify simply means to reduce.

Therefore,

[tex]\frac{(s^{2}+1 )^{2} (-2)-(-2s)(2)(s^{2}+1)(2s)}{(s^{2}+1 )^{4} }[/tex]

[tex]\frac{(s^{2}+1 )^{2} (-2)-(-2s)(2)(s^{2}+1)(2s)}{(s^{2}+1 )^{4} } = \frac{(s^{2} +1 )((s^{2}+1 )(-2)-(-2s)(2)(2s))}{(s^{2} +1)^{4} }[/tex]

Therefore,

[tex]\frac{(s^{2} +1 )((s^{2}+1 )(-2)-(-2s)(2)(2s))}{(s^{2} +1)^{4} } = \frac{-2s^{2}-2+8s^{2} }{(s^{2} +1)^{3} }[/tex]

Hence,

[tex]\frac{-2s^{2}-2+8s^{2} }{(s^{2} +1)^{3} } = \frac{6s^{2}-2 }{(s^{2}+1 )^{3} }[/tex]

learn more on simplification here: brainly.com/question/9950097

#SPJ1