Respuesta :

Using the law of cosines, the missing measures of the triangle are:

a = 5.6 m; B = 43.3°; C = 99.7°.

What is the Law of Cosines?

a² = c² + b² − 2bc × cos(A)

Given the following:

m∠A = 37°

b = 6 cm

c = 9 cm

Apply the law of cosines formula to find a:

a² = 9² + 6² − 2(6)(9) × cos(37)

a = √[9² + 6² − 2(6)(9) × cos(37)] ≈ 5.6 m

Find B:

b² = a² + c² − 2ac × cos(B)

6² = 5.6² + 9² − 2(5.6)(9) × cos(B)

36 = 112.36 - 100.8 × cos(B)

36 - 112.36 = - 100.8 × cos(B)

-76.36 = - 100.8 × cos(B)

-76.36/-100.8 = cos(B)

0.7278 = cos(B)

B = cos^(-1)(0.7278)

B = 43.3°

C = 180 - 37 - 43.3 [triangle sum theorem]

C = 99.7°

Learn more about the law of cosines on:

https://brainly.com/question/4372174

#SPJ1

Ver imagen akposevictor