Respuesta :

The simplified form of the expression is [tex]x^{-45} y^{-42}[/tex]

Simplifying an expression

From the question, we are to simplify the given expression

The given expression is

[tex]\frac{x^{8}y^{-26} }{x^{14}y^{-5} } \times x^{-39} y^{-21}[/tex]

The expression can be simplified as shown below

[tex]\frac{x^{8}y^{-26} }{x^{14}y^{-5} } \times x^{-39} y^{-21}[/tex]

[tex]\frac{x^{8} \times x^{-39} \times y^{-26} \times y^{-21} }{x^{14} \times y^{-5} }[/tex]

[tex]\frac{x^{8+-39} \times y^{-26+-21} }{x^{14} \times y^{-5} }[/tex]

[tex]\frac{x^{8-39} \times y^{-26-21} }{x^{14} \times y^{-5} }[/tex]

[tex]\frac{x^{-31} \times y^{-47} }{x^{14} \times y^{-5} }[/tex]

Then,

[tex]\frac{x^{-31} }{x^{14} } \times \frac{ y^{-47} }{ y^{-5} }[/tex]

[tex]x^{-31-14} \times y^{-47--5}[/tex]

[tex]x^{-31-14} \times y^{-47+5}[/tex]

[tex]x^{-45} \times y^{-42}[/tex]

[tex]x^{-45} y^{-42}[/tex]

Hence, the simplified form of the expression is [tex]x^{-45} y^{-42}[/tex]

Learn more on Simplifying an expression here: https://brainly.com/question/2320607

#SPJ1