3Ba+Al2(SO4)3 -->2Al+3BaSO4,

how many grams of aluminum will be produced if 1.0 g of Ba react with 1.80 g of Al2(SO4)3?


Using the balanced equation

3Ba+Al2(SO4)3 -->2Al+3BaSO4,

how many grams of aluminum will be produced if 1.0 g of Ba react with 1.80 g of Al2(SO4)3?

Respuesta :

13.5 x [tex]10^-2[/tex] g of aluminium will be produced if 1.0 g of Ba reacts with 1.80 g of [tex]Al_2(SO_4)3[/tex].

What are moles?

The mole is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilograms of carbon 12; its symbol is “mol”.

Balanced Equation:

[tex]3Ba + Al_2(SO_4)_3[/tex] → [tex]2Al+3BaSO_4[/tex]

Grams of Ba: 1.0 g

Grams of [tex]Al_2(SO_4)_3[/tex]: 1.8g

Calculate the moles of Ba and [tex]Al_2(SO_4)_3[/tex]:

[tex]\frac{1g Ba}{137.3}[/tex] = 7.3 x[tex]10^{-3}[/tex]mol

1.8g [tex]Al_2(SO_4)_3[/tex]/ 342 = 5.3 x [tex]10^-3[/tex] mol [tex]Al_2(SO_4)_3[/tex]

Find the limiting reactant:

Ba has a coefficient of 3 in the balanced equation, so we divide the  moles of Ba by 3 to get  7.3 x [tex]10^-3[/tex] mol Ba ÷3 = 2.43 x [tex]10^-3[/tex]

[tex]Al_2(SO_4)_3[/tex] has a coefficient of 1, so if we divide by 1, we get the same number of 5.3 x[tex]10^-3[/tex]

2.43 x [tex]10^-3[/tex] is smaller than 5.3 x [tex]10^-3[/tex], therefore Ba is the limiting reactant.

finally, we just find the number of moles of Al

The ratio of Al to Ba is 2:3

7.3 x [tex]10^-3[/tex] x (2÷3) = 5 x [tex]10^-3[/tex] mol Al

Convert into mass.

5 x [tex]10^-3[/tex] mol Al  x 27 = 13.5 x [tex]10^-2[/tex] g

Hence, 13.5 x [tex]10^-2[/tex] g of aluminium will be produced if 1.0 g of Ba reacts with 1.80 g of [tex]Al_2(SO_4)3[/tex].

Learn more about moles here:

https://brainly.com/question/15209553

#SPJ1