1098779
contestada

Help me please !!

The sum of 5th and 9th terms of an A.P. is 72 and the sum of 7th and 12th terms is 97. Find the A.P.

Respuesta :

[tex] \star\:{\underline{\underline{\sf{\purple{Given ::}}}}}[/tex]

❖ [tex]\sf a_{5} + a_{9} = 72 [/tex]

❖ [tex]\sf a_{7} + a_{12}= 97 [/tex]

[tex] \star\:{\underline{\underline{\sf{\purple{To \: Find ::}}}}}[/tex]

❖ The A.P

[tex] \star\:{\underline{\underline{\sf{\purple{Solution ::}}}}}[/tex]

Let,

[tex]a[/tex] be the first term and [tex]d[/tex] be the common difference of the A.P

According to the question,

[tex]\sf a_{5} + a_{9} = 72 [/tex] and [tex]\sf a_{7} + a_{12}= 97 [/tex]

[tex]\longrightarrow \sf (a + 4d) + (a + 8d) = 72[/tex] and [tex]\sf (a + 6d) + (a + 11d) = 97[/tex]

Thus, we have

[tex] \longrightarrow \sf 2a + 12d = 72 - - (i)[/tex]

[tex] \longrightarrow \sf 2a + 17d = 97 - - (ii) [/tex]

Subtracting (i) from (ii), we get

[tex] \implies \sf 5d = 25[/tex]

[tex] \implies \sf d = \dfrac{25}{5} [/tex]

[tex]\implies {\star{ \underline{\boxed{\sf{\pink{\sf d = 5}}}}}}[/tex]

Now,

Putting d=5 in (i), we get

[tex] \longrightarrow \sf 2a + 12(5) = 72 [/tex]

[tex] \longrightarrow \sf 2a + 60= 72 [/tex]

[tex]\longrightarrow \sf 2a= 72 - 60[/tex]

[tex]\longrightarrow \sf 2a= 12[/tex]

[tex]\longrightarrow \sf a= \dfrac{12}{2} [/tex]

[tex]\longrightarrow{\star{ \underline{\boxed{\sf{\pink{\sf a = 6}}}}}}[/tex]

[tex] \therefore[/tex] a=6 and d=5

Hence, the A.P is 6,11,16,21,26...

[tex]\rule{250pt}{2.5pt}[/tex]

Given:-

  • The sum of the 5th and 9th terms of an A.P is 72 and the sum of 7th and 12th terms is 97.

To find:-

  • we have to find the A.P. = ?

Solution:-

Let, the first term of A.P be 'a' and common difference is 'd'...!

[tex] \\ \maltese \: \: {\underline{ \sf {The \: \: sum \: \: of \: \: a_5 \: \: and \: \: a_9 \: \: is \: \: 72 }}} \\ [/tex]

[tex] \\ \sf\implies A_5 \: + \: A_9=72 \: \\ [/tex]

[tex] \\ \sf\implies a + 4_d + a + 8_d = 72 \\ [/tex]

[tex] \\ \sf\implies 2_a+12_d=72 \qquad \qquad - (i) \\ \\ [/tex]

[tex] \\ \maltese \: \: {\underline{ \sf {The \: \: sum \: \: of \: \: a_7 \: \: and \: \: a_{12} \: \: is \: \: 97 }}} \\ [/tex]

[tex] \\ \sf\implies A_7 \: + \: A_{12}=97 \: \\ [/tex]

[tex] \\ \sf\implies a + 6_d + a + 11_d = 97 \\ [/tex]

[tex] \\ \sf\implies 2_a+17_d=97 \qquad \qquad - (ii) \\ \\ [/tex]

[tex] \\ \maltese \: \: {\underline{ \sf {Subtract \: \: equation \: (i) \: from \: \: equation \: (ii), \: we \: \: get }}} \\ [/tex]

[tex] \\ \sf \implies \: 2_a + 17_d = 97 \\ [/tex]

[tex] \\ \sf \implies \: - (2_a + 12_d) = 72 \\ [/tex]

[tex] \\ \sf \implies \: 5_d = 25 \\ [/tex]

[tex] \\ \implies{\underline{\boxed{\sf {d=5 }}}} \\\\ [/tex]

[tex] \\ \maltese \: \: {\underline{ \sf {Put \: \: the \: \: value \: \: of \: \: d \: \: in \: \: Equation \: \: (i) }}} \\ [/tex]

[tex] \\ \sf\implies 2_a + 12_d = 72 \\ [/tex]

[tex] \\ \sf\implies 2_a+12_{(5)}=72 \\ [/tex]

[tex] \\ \sf\implies 2_a + 60 = 72 \\ [/tex]

[tex] \\ \sf\implies 2_a=72-60 \\ [/tex]

[tex] \\ \sf\implies 2_a = 12 \\ [/tex]

[tex] \\ \implies\sf a = \frac{12}{2} \\ [/tex]

[tex] \\ \implies{\underline{\boxed{\sf {a=6 }}}} \\ [/tex]

Henceforth the first term of A.P is 'a = 6' and common difference is 'd= 5'...!

∴ A.P = 6 , 11 , 16 , 21.....