Respuesta :

Answer:

42

Step-by-step explanation:

We use (BODMAS) :

Brackets

Order/Index

Division

Multiplication

Addition

Subtraction

Now we do bracket first :

7(3²) = 7(9) = 63

Now we do division :

63÷3 = 21

Now we do multiplication :

2 × 21 = 42

Hope this helped and have a good day

Answer:

[tex] \sf2 \cdot \cfrac{7(3 {}^{2}) }{3} = \boxed{ \bf 42}[/tex]

Step-by-step explanation:

Given expression:

[tex] \sf2 \cdot \cfrac{7(3 {}^{2}) }{3} [/tex]

To :

  • Evaluate the expression.

Solution:

Let's use PEMDAS for evaluating.

  • P stands for Parentheses
  • E for exponents
  • M for multiplication
  • D for Division
  • A for addition
  • S for subtraction

[tex] \sf2 \cdot \cfrac{7(3 {}^{2}) }{3} [/tex]

[tex] \rightarrow 2 \times \cfrac{7(9)}{3}[/tex]

[tex] \rightarrow \: 2 \times \cfrac{63}{3} [/tex]

[tex] \rightarrow \: \cfrac{2 \times \cancel{63} \: \: {}^{21} }{ \cancel3 \: \: {}^{1} } [/tex]

[tex] \rightarrow2 \times 21[/tex]

[tex] \longrightarrow \sf \: 42[/tex]

Hence we can conclude:

[tex] \sf2 \cdot \cfrac{7(3 {}^{2}) }{3} = \boxed{ \bf 42}[/tex]