Formulas that may be useful relative to a sphere: V = 43πr3 and SA = 4πr2
The surface area of a sphere is 200.96 square centimeters. What is the approximate volume of the sphere? Use 3.14 for π. Round your answer to the nearest hundredth.

Respuesta :

Finding the radius from it's surface area, the volume of the sphere is of 268.08 cm³.

What are the surface area and the volume of an sphere?

For an sphere of radius r, we have that the surface area is given by:

[tex]S = 4\pi r^2[/tex]

The volume is given by:

[tex]V = \frac{4\pi r^3}{3}[/tex]

Considering the surface area of 200.96 cm², the radius is given by:

[tex]S = 4\pi r^2[/tex]

[tex]200.96 = 4\pi r^2[/tex]

[tex]r = \sqrt{\frac{200.96}{4\pi}}[/tex]

r = 4 cm

Hence the volume is given by:

[tex]V = \frac{4\pi \times 4^3}{3} = 268.08 \text{cm}^3[/tex]

More can be learned about the volume of an sphere at https://brainly.com/question/25608353

#SPJ1