The graph below shows an exponential function and a quadratic function.
-252-151-05. 05 15 à 25
EJ.§.
How do the functions compare over the interval 0 H
...

da
v
CA
3
31
1.5.
da V

Respuesta :

The exponential function grows at approximately half the rate of the quadratic function

Complete question

The graph below shows an exponential function and a quadratic function. How do the functions compare over the interval 0 ≤ x ≤ 1?

How to compare both functions?

At the interval 0 ≤ x ≤ 1, we have:

Exponential function                       Quadratic function

f(0) = 1                                                 g(0) = 0

f(1) = 2                                                  g(1) = 2

The average rate of change is calculated using:

[tex]m = \frac{y_2 -y_1}{x_2-x_1}[/tex]

So, we have:

[tex]f'(x) = \frac{2-1}{1-0}[/tex]

f'(x) = 1

[tex]g'(x) = \frac{2-0}{1-0}[/tex]

g'(x) = 2

By comparison;

g'(x) = 2 * f'(x)

This means that the exponential function grows at approximately half the rate of the quadratic function

Read more about rates of change at:

https://brainly.com/question/8728504

#SPJ1

Ver imagen MrRoyal